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Abstract : 

A numerical technique for the computation o f  power transfer and the 

attenuation constants of  waveguides with arbitrary cross section i s  studied. 

The wave function, solution o f  the scalar Helmholtz wave equation, i s  

obtained for the ideal waveguide with perfectly conducting walls by the 

point-matching method. Using the conventional assumption that the field 

inside the waveguide with walls of finite but large conductivity i s  practically 

the same as that in the ideal waveguide, the power transfer and the attenuation 

constant are formulated. Numerical values are obtained for the TE 

the square waveguide to demonstrate the accuracy of the method. 
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1 .  Introduction 

In the investigation of electromagnetic wave propagution in practical 

waveguides, the ideal guides with perfectly conducting walls of the same 

geometrical configuration are usually considered first. The field disfributions 

and the cutoff wave numbers are approximately the same for both guides i f  the 

practical guide walls are made o f  good conductors. It is reasonable to approxi- 

mate the power transfer and the current flow for the practical case by those of 

the ideal solutions, and therefore, the attenuation constant can be estimated. 

When the waveguides under consideration have arbitrury cross sections, 

non-separability o f  the wave equations in the cross-sectional coordinate systems 

i s  encountered. Approximate techniques for solving such problems huve been 

investigated by several authors [Cohn, 1947; Yashkin, 1958; Meinke et al., 

1963; Tischer and Yee, 19641 to overcome this diff icully. Recently, the 

point-matching method has been applied to calculate the cutoff frequencies 

of the waveguides 1Yee and Audeh, 19651 . It i s  a technique by which the 

wave function satisfies the boundary conditions at a finite number of points. 

In practical considerations, waveguides are made of  good conducting 

material with finite conductivity. The power dissiputed i n  the guide walls is, 

therefore, of  considerable importonce at frequencies in the microwave,region 

or higher. The purpose of +his paper i s  to calculate the power transfer and the 

attenuation constants of  waveguides with arbitrary cross sections by the point- 

matching method. 

A square waveguide i s  considered as an example i o  test the theory 

present here. The field distribution i s  obiained and compared with the exact 

solution, and the agreement i s  excellent. The power transmitted in the guide 

i s  also calculated with three-place accuracy. The general’attenuation constants 

for TE and TM modes are fonnulated and verified by calculating the attenuation 

constant of a square waveguide operating i n  the ‘TE mode and the results agree 

very well  with the ideal solutions, 
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2. The Point-Matching Solution of the Wave Equation 

Consider the air-filled Iioilow-piped uniform waveguide with u coordinate 

system a s  ;ndicated in Fig. l (a) .  The cross section of the guide is assumed within 

the applicabili ty of the point-matching method. Let the  electromcrgnei!c wave 

propagate in the z-direction with a time-harmonic dependence l e x p  ( iu t ) ]  . As 

shown by the authors 1Yee and Audeh, 19651 , the wave function, solution of the  

scalar I-ielmhoifz wave equation, is conveniently expressed as u series expression 

in terms of the circular cylindrical modes, i f  the series converges uniformly and 

rapidly, the wave function may be upproximately written as 

N 
J, = X (A cos n Q  4 E sin ne) J (kr) (1 )  n I 1  n 

n = o  

where r and 8 are the polor coordinates, J is the nth order Bessel's function 

of the  first kind, N i s  a n  integer depeiiding on the desired accuracy, A and 

B 
wave number k, the eigenvalue of the present boundary value problem, is 

related to the propagation constant k as  

n 

n 
are expansion constants t o  be determined by the boundary conditions. The n 

z 

2 2 2 k = k  - k  
0 z 

where 

p and c0 a r e  the constitutive parameters of air. The quantity X 
wavelength. Conventionally, the wave function J, = H For TE (transverse 

electr ic)  modes, and JI = E for 'I'M (trunsverse magnetic) modes. The wave 

function JI then must satisfy either Dir-ichlet o r  Ideumann boundary conditions 

for ideal waveguides. 

is the guide 
0 9 
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I n  applying the point-matching method, the boundary conditions men- 

tioned above are imposed ut only (2N + 1) properly chosen points around the cross 

sectional contour of  the waveguide. These boundary conditions are automatically 

satisfied approximately elsewhere at the surface. Let the points (r 

‘2 I ‘2)’ * *  (‘2N f e 2N ) be a set o f  chosen points around the cross section. A 

system o f  (2N + 1) homogeneous linear algebraic equations of the expansion 

eo), (rl , e,), o f  

coefficients i s  obtained from (1) and the proper boundary conditions at these points. 

That is, 

N 
C (An cos ne + B  sin n0 ) J (kr = O  

n =o m n  m n  m 

for TM wave modes, and 

N 

n =o 

(3) N 
+tan a C 

n =o 
n( - A n  sin 118 + B cos nt) ) J (kr ) = O  

m in n m n in 

for TE wave modes, where m =0, 1 , 2 . . . . 2N, and 0, i s  the angle between 
fll 

the mdial unit vector and the unit vector normal to the cross-sectional contour 

at point (r , em) as shown in Fig. 1 (b). 
m 

3 



To obtain non-trivial solutions for the expansion coefficients A and 
n 

the determinant of these coefficients must be zero. The cutoff wave 'n 
numbers are then readily determined. There are a denumerably infinite number 

o f  values of k possible, each of  which represents the cutoff wave number of 

a particular wave mode. Corresponding to each value of k, the expansion co- 

efficients A and B 

the coefficients equal to unity and solving the system of 2N inhomogeneous 

linear equations for the remaining coefficients. The choice of the 2N equations 

in either (2) OF (3) i s  arbitrary. The wave function i s  then fully determined for 

each wave mode. With the knowledge of the wave function the irunsverse 

field components can be computed by I Plonsey and Collin, 1961 I 

of ( I )  can be obtained. This i s  done by setting one of  
n n 

- 2 
Et=( jk /k  ) 1 - V E + (wp /k ) z x (V H ) ]  

Z t z  o z  t z  

2 - 
Ht = ( - j k  /k ) l ( W F g / k Z )  r x ( V  E ) t vt H z ]  

Z t z  

(4) 

where I. i s  the unit vector in the z-direction, and v 
operator. The above procedure describes the field inside the waveguide completely. 

i s  the transverse gradient 
t 
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3. Power Transfer and Attenuation Constant 

The field distribution inside practical waveguides made o f  good 

conductors can be approximated by that of the corresponding ldeal waveguide, 

Hence, the power transfer i s  given by 

(6) = (1/2) Js Re x TI dS pT 

where S i s  the cross-sectional area of the waveguide, (") denotes the operation 

o f  taking the complex conjugate. The transverse components of the field, 

and Ht are described by (4) and (5) with the point-matching solution of (1). 

Combining (4) through (6) for each of TE modes and TM modes, yields 

Et 

where for TM modes 

for TE modes 

and Z = JU / E  i s  the intrinsic impewnce o free space. The quantities f 

and f are the cutoff and operating frequencies respectively. By using Gauss 

theorem [Ramo and Whinnery, 19581 (7) can be further reduced to 

0 0 0' C 

Evaluation o f  the integral in (7) or (8) may be accomplished by numeriy l  techniques. 
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Since the conductivity of the guide walls i s  finite in practical upplication, 
,. 

part of the ttunsmitted power w i l l  dissipate i n  the walls. lhe power loss per unit 

length of the guide i s  conventionally estimated by 

I-_ 

where R =fi /20 , i s  the surface resistance of  the guide wall, u i s  the 
S 0 

conductivity of  the conducting material. The path, C, of ihe line integral i s  

the contour of the cross section. The integrand in (Y) i s  the squure of fhe mogni- 

tude of  the magnetic field component fangential to the periphery of: the ideal 

guide walls. Since the normal component of the transverse magnetic field H 
automatically vanishes a t  the guide surfnce, i t  i s  then possible i o  express 

H 

t 

for TM wave modes as follows: 
tan 

where r a function o f  0 , describes Ihe cross-sectionul conlour. For TE 

wave modes however, the longitudinal component of the iriagnetic field olso 

contributes to the tangential component e Hence, 

c '  

From (5), the syuore of  the magnitude of  the transverse magnetic field, therefore, 

may be written as 

and 

where 

for TM inorles 

. for TE modes 
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The attenuation constani i s  conventionally defined by 

a= PL/2 PT 

if the guide walls are made of good conducting material. Combin,,lg (8) 

through (14) yields the following attenuation constants: 

for TM wave modes, and 

for TE wave modes. The integintions in (15) and (16) can be perbrmed 

numerically and good accuracy i s  obtainable as w i l l  be demonstrated in 

the next section. 
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4. Numerical Example 

To demonstrate the validity o f  ihe point-matching method for determination 

of the field distribution, power transfer, and the attenuation constant, it i s  assumed 

10 
that an electromagnetic wave i s  propagating inside a sqwore waveguide i n  the TE 

mode. The guide has a width of  2a and i s  placed with i t s  cenier at the origin of 

a rectangular coordinate system as illustruted i n  Fig. 2. Since the longitudinal 

f ield component H i s  symmetrical with respect i o  the x-axis for TE the sine 

terms in (1) are omitted. The cutoff wave number calculated by (3) using six points 

only on the upper half of  the guide's cross-sectional coniour (see Fig. 2) i s  1.5716, 

compared with the exact value of  1.5708. The expansion coefficients were 

determined in terms of  the coefficient A which is equal to a pre-assiyned value 

of unity. The resulting wave function i s  therefore expressed in the following form: 

Z 10' 

1 

9 
3 

n t- 1 (Iu) cos (2 n - 1) (3 J 2 n - ~  $ =-HZ= C ( -1)  
n = l  

with three-place accuracy. The disappearance o f  the even ierms i n  (17) i s  not 

surprising because H 

series in (17) converges rapidly. It i s  observed thut fhe accuracy of  $ i s  estimated 

by taking the ratio of  the lowest neglected term i o  the first ierm. That is, 

for TEIO i s  antisymmetric with respect to the y-axis. The 
2 

J7(kr) / J1 (kr) < 0.001 

for the largest value o f  r which isnu.  It can therefore be concluded that the 

wave function in (17) does represent the field disiribukion in the square guide 

under consideration up to three-place accuracy. Table 5 contains the values of 

H as a function of  position x for three different lacaiions i n  the y-direction, 

and compared with the exact solution 
Z 

HZ = 0.5 sin(n x/2u) 
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The power transported in the waveguide was calculated numerically 

using (8) and (17), and the result was 0.1256 which i s  excellent when compared 

with the exact value of 0.1250, 

The attenuation constant i s  obtained by substituting the approximate wave 

function (17) into (16) and performing numerical integrutions. It i s  

where RSc = R $m, the surface resistance at cutoff frequency, and a 
P 

denotes the attenuation constant of the point matching solution. The exact 

attenuation constant, a 

1944 I is given by 

s c  

for a square guide of  width 2a [Ramo and Whinney, e '  

(ae a Z 0 / R  sc ) = ( 1 / 2 ~ )  C C1 4-2 (f C / f)2] 

The comparison of  these two attenuation constants i s  shown i n  Fig. 3 over the 

frequency range of  (f/f ) = 1 through 10. The val idity of the atienuation 

constant calculated by the point matching solutions i s  then verified. 
C 
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5.  Discussion 

The point-matching method offers a new and convenient method for solving 

waveguide problems especially when the cross-sectional shupes of such guides are 

not largely deviated from a circle. The theory has been verified by applying it 

to well known problems, and i t  does give reasonably accurate results i f  a digital 

computer i s  available. In Table 1 for example, the point-matching method yields 

the field distribution in the square guide wiih excellent agreement with the exact 

solution at y/u = O f  and y/a =l. There i s  however, a slight deviation near the 

middle region (y/a =0.5). From a mathematical point of  view, the agreement 

between the field distribution calculated by the approxirnute und exact approaches 

i s  not surprising, since, by wave iransformation [ I-Iarringiori, 1961 3 

The formulation o f  the attenuation constants (15) und (16) i s  proven correct 

as seen by the results i n  Fig. 3, i n  addition to the agreenlenf of: the expressions For 

TE 

with those formulated by Gannet and Szekely L196O:l. 

of (18) and (19). It may also be noted that the f'ormulus (15) and (16) agree 10 

Since the integrals i n  (15) and (16) are fl.equency-irxlepetideni., ihe 

attenuation consiants i n  the high frequency range increase with frequeiicy for a l l  

TM and most o f  TE modes. The attenuation constant i n  fhe T E  case i s  inversely 

proportional to the frequency i f  ond only i f  

J 

However, this condition in general cannot be fulf i l led except for TE modes of 

circular guides. Therefore, it i s  predicted ,khat a wide band of frequency of low 

attenuation can be achieved if the cross-sectional shape of  a uniform waveguide 

i s  not largely deviated .From u circle. 

no 
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Figure Captions 

Fig. 1 (a) A waveguide with arbitrary cross section 

and the relevant coordinate sysi,em. 

(b) The angle a at point (r , 8 ) on ihe 
m m in 

cross-sect iona I contour. 

Fig. 2 

Fig. 3 

The square guide with the six chosen points. 

The attenuation constants of the square 

waveguide. 
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Table 1 .  The field distribution (H ) computed by the point-matching 
method and c:ornpared 

2 
with the exact solution. 
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0.0782 1 7 
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0.293893 

0.353554 
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0.445506 

0.475536 

0.493860 

0.500034 

0.078444 

0.154961 

0.227672 

0.294789 

0.354664 

0.405825 

0.4470 13 

0.4772 15 

0.495609 

0.501979 

1 

0 .O78 1 94 

0.154470 

0.226955 

0.293867 

0.353562 

0.404567 

0.445624 

0.47571 1 

0.494075 

0.500246 

Exact 

0.0782 1 7 

0.154508 

0.226995 

0.293892 

0.353553 

0.404508 

0.445503 

0.475528 

0.493844 

0.500000 


